Immunology Based Publications

While our mission is to research and development meaningful assays to help partners accelerate timelines and investor requirements, we have to take time to acknowledge the vast amount of research in the field of immunology by very dedicated, passionate and innovative scientists. Their research guides the industry’s understanding and without it – we would fly blind.

REFERENCES

 

  1. Reich DS, Lucchinetti CF, and Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018;378(2):169-80.
  2. Bielekova B, Sung MH, Kadom N, Simon R, McFarland H, and Martin R. Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J Immunol. 2004;172(6):3893-904.
  3. Dendrou CA, Fugger L, and Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545-58.
  4. Cao Y, Goods BA, Raddassi K, Nepom GT, Kwok WW, Love JC, et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Science translational medicine. 2015;7(287):287ra74.
  5. Frisullo G, Nociti V, Iorio R, Patanella AK, Marti A, Caggiula M, et al. IL17 and IFNgamma production by peripheral blood mononuclear cells from clinically isolated syndrome to secondary progressive multiple sclerosis. Cytokine. 2008;44(1):22-5.
  6. Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, et al. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol. 2009;66(3):390-402.
  7. McInnes IB, and Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205-19.
  8. Chabaud M, Fossiez F, Taupin JL, and Miossec P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol. 1998;161(1):409-14.
  9. Miossec P. IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect. 2009;11(5):625-30.
  10. Miossec P, Korn T, and Kuchroo VK. Interleukin-17 and type 17 helper T cells. N Engl J Med. 2009;361(9):888-98.
  11. Seyler TM, Park YW, Takemura S, Bram RJ, Kurtin PJ, Goronzy JJ, et al. BLyS and APRIL in rheumatoid arthritis. J Clin Invest. 2005;115(11):3083-92.
  12. Tsokos GC, Lo MS, Costa Reis P, and Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716-30.
  13. Ma J, Yu J, Tao X, Cai L, Wang J, and Zheng SG. The imbalance between regulatory and IL-17-secreting CD4+ T cells in lupus patients. Clin Rheumatol. 2010;29(11):1251-8.
  14. Ronnblom L, and Pascual V. The innate immune system in SLE: type I interferons and dendritic cells. Lupus. 2008;17(5):394-9.
  15. Boehncke WH, and Schon MP. Psoriasis. Lancet. 2015;386(9997):983-94.
  16. Diani M, Altomare G, and Reali E. T Helper Cell Subsets in Clinical Manifestations of Psoriasis. J Immunol Res. 2016;2016:7692024.
  17. Bos JD, Hagenaars C, Das PK, Krieg SR, Voorn WJ, and Kapsenberg ML. Predominance of “memory” T cells (CD4+, CDw29+) over “naive” T cells (CD4+, CD45R+) in both normal and diseased human skin. Arch Dermatol Res. 1989;281(1):24-30.
  18. Chang JC, Smith LR, Froning KJ, Schwabe BJ, Laxer JA, Caralli LL, et al. CD8+ T cells in psoriatic lesions preferentially use T-cell receptor V beta 3 and/or V beta 13.1 genes. Proc Natl Acad Sci U S A. 1994;91(20):9282-6.
  19. Arakawa A, Siewert K, Stohr J, Besgen P, Kim SM, Ruhl G, et al. Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med. 2015;212(13):2203-12.
  20. Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5:5621.
  21. Cheuk S, Wiken M, Blomqvist L, Nylen S, Talme T, Stahle M, et al. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J Immunol. 2014;192(7):3111-20.
  22. Krueger JG, Fretzin S, Suarez-Farinas M, Haslett PA, Phipps KM, Cameron GS, et al. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. The Journal of allergy and clinical immunology. 2012;130(1):145-54 e9.
  23. Lowes MA, Suarez-Farinas M, and Krueger JG. Immunology of psoriasis. Annual review of immunology. 2014;32:227-55.
  24. Matos TR, O’Malley JT, Lowry EL, Hamm D, Kirsch IR, Robins HS, et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing alphabeta T cell clones. J Clin Invest. 2017;127(11):4031-41.
  25. Hawkes JE, Chan TC, and Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. The Journal of allergy and clinical immunology. 2017;140(3):645-53.
  26. Gabrielli A, Avvedimento EV, and Krieg T. Scleroderma. N Engl J Med. 2009;360(19):1989-2003.
  27. Moroncini G, Svegliati Baroni S, and Gabrielli A. Agonistic antibodies in systemic sclerosis. Immunol Lett. 2018;195:83-7.
  28. Okano Y. Antinuclear antibody in systemic sclerosis (scleroderma). Rheum Dis Clin North Am. 1996;22(4):709-35.
  29. Famularo G, Giacomelli R, Alesse E, Cifone MG, Morrone S, Boirivant M, et al. Polyclonal B lymphocyte activation in progressive systemic sclerosis. J Clin Lab Immunol. 1989;29(2):59-63.
  30. Fleischmajer R, Perlish JS, and Reeves JR. Cellular infiltrates in scleroderma skin. Arthritis Rheum. 1977;20(4):975-84.
  31. Matsushita T, Hamaguchi Y, Hasegawa M, Takehara K, and Fujimoto M. Decreased levels of regulatory B cells in patients with systemic sclerosis: association with autoantibody production and disease activity. Rheumatology (Oxford). 2016;55(2):263-7.
  32. Yoshizaki A. Pathogenic roles of B lymphocytes in systemic sclerosis. Immunol Lett. 2018;195:76-82.
  33. Chizzolini C, Dufour AM, and Brembilla NC. Is there a role for IL-17 in the pathogenesis of systemic sclerosis? Immunol Lett. 2018;195:61-7.
  34. Sakkas LI, Xu B, Artlett CM, Lu S, Jimenez SA, and Platsoucas CD. Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol. 2002;168(7):3649-59.
  35. Scharffetter K, Lankat-Buttgereit B, and Krieg T. Localization of collagen mRNA in normal and scleroderma skin by in-situ hybridization. Eur J Clin Invest. 1988;18(1):9-17.
  36. O’Reilly S, Hugle T, and van Laar JM. T cells in systemic sclerosis: a reappraisal. Rheumatology (Oxford). 2012;51(9):1540-9.
  37. Frantz C, Auffray C, Avouac J, and Allanore Y. Regulatory T Cells in Systemic Sclerosis. Front Immunol. 2018;9:2356.
  38. Jevtic S, Sengar AS, Salter MW, and McLaurin J. The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Res Rev. 2017;40:84-94.
  39. Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol. 2002;124(1-2):83-92.
  40. Oberstein TJ, Taha L, Spitzer P, Hellstern J, Herrmann M, Kornhuber J, et al. Imbalance of Circulating Th17 and Regulatory T Cells in Alzheimer’s Disease: A Case Control Study. Front Immunol. 2018;9:1213.
  41. Garretti F, Agalliu D, Lindestam Arlehamn CS, Sette A, and Sulzer D. Autoimmunity in Parkinson’s Disease: The Role of alpha-Synuclein-Specific T Cells. Front Immunol. 2019;10:303.
  42. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119(1):182-92.
  43. Kustrimovic N, Comi C, Magistrelli L, Rasini E, Legnaro M, Bombelli R, et al. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naive and drug-treated patients. J Neuroinflammation. 2018;15(1):205.
  44. Sommer A, Marxreiter F, Krach F, Fadler T, Grosch J, Maroni M, et al. Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC-Based Model of Parkinson’s Disease. Cell Stem Cell. 2018;23(1):123-31 e6.
  45. Chinetti-Gbaguidi G, Colin S, and Staels B. Macrophage subsets in atherosclerosis. Nat Rev Cardiol. 2015;12(1):10-7.
  46. Ilatovskaya DV, Halade GV, and DeLeon-Pennell KY. Adaptive immunity-driven inflammation and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2019;317(6):H1254-H7.
  47. Donath MY, Dinarello CA, and Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol. 2019;19(12):734-46.
  48. Lu J, Zhao J, Meng H, and Zhang X. Adipose Tissue-Resident Immune Cells in Obesity and Type 2 Diabetes. Front Immunol. 2019;10:1173.
  49. Iseme RA, McEvoy M, Kelly B, Agnew L, Walker FR, and Attia J. Is osteoporosis an autoimmune mediated disorder? Bone Rep. 2017;7:121-31.
  50. Wick G, Grundtman C, Mayerl C, Wimpissinger TF, Feichtinger J, Zelger B, et al. The immunology of fibrosis. Annual review of immunology. 2013;31:107-35.
  51. Sakaki M, Hiroishi K, Baba T, Ito T, Hirayama Y, Saito K, et al. Intrahepatic status of regulatory T cells in autoimmune liver diseases and chronic viral hepatitis. Hepatol Res. 2008;38(4):354-61.
  52. Wolfram D, Rabensteiner E, Grundtman C, Bock G, Mayerl C, Parson W, et al. T regulatory cells and TH17 cells in peri-silicone implant capsular fibrosis. Plast Reconstr Surg. 2012;129(2):327e-37e.
  53. Sanges S, Guerrier T, Launay D, Lefevre G, Labalette M, Forestier A, et al. Role of B cells in the pathogenesis of systemic sclerosis. Rev Med Interne. 2017;38(2):113-24.
  54. Cai J, Zhang XJ, and Li H. The Role of Innate Immune Cells in Nonalcoholic Steatohepatitis. Hepatology. 2019;70(3):1026-37.
  55. Lee SJ, and Borrello I. Role of the Immune Response in Disease Progression and Therapy in Multiple Myeloma. Cancer Treat Res. 2016;169:207-25.
  56. Tatiya-Aphiradee N, Chatuphonprasert W, and Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. J Basic Clin Physiol Pharmacol. 2018;30(1):1-10.
  57. Neurath MF, and Chiriac MT. Targeting Immune Cell Wiring in Ulcerative Colitis. Immunity. 2019;51(5):791-3.
  58. Neurath MF. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol. 2019;20(8):970-9.